3dB定向耦合器的工艺容差分析

期刊: 环球科学 DOI: PDF下载

杨彦伟,李莹,陆一锋,向智,刘格,邹颜

芯思杰技术(深圳)股份有限公司 广东深圳 518055

摘要

分析了3dB定向耦合器几个参数的相互关系,运用BPM软件对不同波导条宽的退火质子交换铌酸锂基3dB定向耦合器的工艺容差进行了仿真分析,得到了几种不同耦合间距下两输出波导输出光功率的关系。


关键词

3dB定向耦合器 铌酸锂 光功率 退火质子交换

正文


引言Research on Mechanical Equipment Fault Prediction and Intelligent Operation and Maintenance Platform Construction Based on Deep Learning and Machine Vision

Yin Hualin

Changzhou Gengyuan Machinery Technology Co., Ltd., Changzhou 213000, Jiangsu

 

Abstract: This article focuses on the research of mechanical equipment fault prediction and intelligent operation and maintenance platform construction based on deep learning and machine vision. Elaborate on relevant basic theories, design a platform architecture including data collection modules, explore fault prediction models, introduce the platform development environment and implementation process, and provide theoretical and practical references for improving the accuracy of mechanical equipment fault prediction and the level of intelligent operation and maintenance.

Keywords: deep learning; Machine vision; Mechanical equipment; Fault prediction; Intelligent operation and maintenance

 

1  Fundamental Theory of Deep Learning and Machine Vision

Deep learning belongs to machine learning technology, which is based on artificial neural networks and constructs multi-layer neural network models. It can automatically learn complex patterns and feature representations from massive data. A neural network is composed of numerous interconnected layers of neurons, and data is transmitted between layers to complete feature extraction and transformation. Its deep structure enables the model to learn advanced abstract features, resulting in significant achievements in fields such as image and speech recognition.

Machine vision uses optical devices and computer algorithms to simulate the human visual system. With the help of cameras, image information is collected, and through image processing algorithms such as filtering, enhancement, and segmentation, interesting features are extracted to achieve tasks such as perception, measurement, recognition, analysis, classification, localization, and defect detection of target objects.

 

2 Architecture Design of Mechanical Equipment Fault Prediction and Intelligent Operation and Maintenance Platform

The mechanical equipment fault prediction and intelligent operation and maintenance platform adopts a layered architecture to ensure efficient and stable operation. The specific architectures are as follows:

Data collection layer: Located at the bottom layer, like the "tentacles" of the platform, it collects physical quantities and operational status information such as temperature and vibration from multiple sources such as equipment sensors and monitoring devices, accurately obtaining raw data.Data processing and analysis layer: located in the middle, it receives data from the collection layer, preprocesses it first, removes noise, fills in missing values and standardizes them, and then uses deep learning and machine vision algorithms to mine and analyze, construct fault prediction models, and undertake the "brain" responsibility of intelligent data processing.Application display layer: At the top level, a visual interface is used to present fault prediction, equipment health assessment, and operation and maintenance suggestions to management personnel, maintenance personnel, etc., helping them to timely understand the equipment status and make decisions. Collaborate at all levels to achieve platform functionality.

 

3 Mechanical equipment fault prediction model based on deep learning and machine vision

The data for predicting mechanical equipment faults is complex and dynamic, and recurrent neural networks (RNNs) and their improved versions of long short-term memory networks (LSTMs) are commonly used. RNN can handle time series data, but there are issues with vanishing or exploding gradients. LSTM introduces gate control mechanism to solve the long-term dependency problem and performs well in fault prediction. To meet the specific equipment failure prediction requirements, the model needs to be improved. For example, by combining attention mechanisms, the model can focus on key time step features when processing sequence data, enhancing the capture of fault sensitive features. At the same time, based on the distribution of different fault data, optimize the network structure, such as adjusting the number and layers of hidden layer neurons, improving the model fitting and generalization ability, and ensuring accurate fault prediction under complex working conditions.

4  Conclusion

The research focuses on deep learning and machine vision, from theoretical foundations to platform architecture, model construction, and implementation and application, to conduct research on mechanical equipment fault prediction and intelligent operation and maintenance platform. This platform will significantly improve the efficiency and reliability of mechanical equipment operation and maintenance, and is expected to be further optimized in the future, exerting greater value in more industrial scenarios.

reference:

[1] Geng Weitao Mechanical surface defect detection based on deep learning [J]. Automation Applications, 2024, 65 (13): 173-175

一、 

3dB定向耦合器是LiNbO3CATV调制器中的重要组成部分,它主要起着使CATV调制器实现双路输出的作用。采用这种平衡桥式调制器结构做CATV调制器,不仅可有效地克服MZ型结构电光调制器所固有的3dB损耗[1],还可使光功率补用效率提高1倍,使CATV网络覆盖更多的用户。

3dB定向耦合器中,使输入光模场重叠达到波导间0.5的耦合功率比是最关键的。在理论上我们总是希望两输出波导间的耦合功率比能达到0.5,但在实际中要实现真正的0.5的耦合功率比仍然是比较困难的,引起耦合功率比偏离0.5的因素主要包括:耦合器两臂的不对称性、波导材料的吸收损耗、耦合间距未到达要求、耦合长度未优化到最佳、输入端的耦次模与奇次模未等同激发、输出端的辐射模发生耦合,以及一些工艺缺陷[2][3]。通过理论分析我们可以设计出理论上的达到0.5耦合功率比的3dB定向耦合器,但在实际工艺过程中总是不可避免的会引入一些工艺操作带来的误差,使实际值与理论值产生偏差,从而使耦合功率比偏离0.5,本文主要先从理论上对退火质子交换LiNbO33dB定向耦合器的几个关键参量进行了系统的分析,再通过BPM软件对部分工艺误差引起的偏差进行了仿真分析,从而确定了3dB定向耦合器的工艺容差。

二、 理论分析

一般3dB定向耦合器的结构如图1所示,它主要由两个部分平行紧邻且完全对称的两臂构成,描述其结构的参数主要有耦合区长度LC、耦合区波导中心间距D、波导宽度W、弯曲过渡区长度L、弯曲过渡区高度H等。

根据耦合模理论可知[4],在两条完全相同、彼此平行紧邻的无损耗波导中,若两波导中的光场相位匹配,则在耦合区沿传播方向的任何一点上,传输的两光场相位差π/2,传输的光功率在两波导中往复交替前进,其能量交换程度可达100%。而在3dB定向耦合器中,只要求进行50%的能量交换,其传输的两光场相位差应为π/4,则当耦合长度

m=012······           (1)

从输入端之一的P1i输入的光将有50%的能量从P2o端输出。当m=0时,达到50%能量交换的最短耦合长度为:

                                                           2)

式中k为耦合系数。可见定向耦合器的耦合区长度仅取决于耦合系数k,耦合系数越大,耦合区长度则越短。而耦合系数与波导结构及两臂的中心距离密切相关[5]

                                      3)

式中p为波导在衬底中的振幅衰减系数,h为波导的横向相位常数,为传播常数(在波长一定的前提下,由波导和衬底折射率及波导宽度决定),其中[4]

                                                     4)

                                                  5)

其中:ns为衬底折射率,nw为波导折射率,为工作光波长,把式(4)和(5)代入式(3)可得

      6)

由式(6)可知,定向耦合器的耦合长度由波长、波导折射率、衬底折射率、波导宽度、两臂间距决定。

当对已设计好了的3dB定向耦合器进行工艺制作时,一般耦合长度、耦合区波导中心间距、波长、衬底折射率是不变的,波导折射率根据所采用的生成波导的方法的不同而有所差异,对于我们所采用XYLiNbO3基退火质子交换光波导,当其处于相时,其波导折射率增量通常为0.012,而由制作工艺所带来的差异主要体现在波导宽度上,它主要是在光刻工艺制作过程中产生的。如果我们通过以上公式来计算波导宽度所带来的耦合光功率比的不同,将是一个十分庞大的工作,而通过现在的BPM软件,可以大大降低其工作量,同时可以得到比较准确的结果。

三、 工艺容差分析

在本次工艺误差分析中,只考虑一个变量即波导宽度。工作波长设为1.55um,工作模式为TE模,采用XY传铌酸锂晶体材料,采用退火质子交换法生成相光波导,波导折射率的典型增量为0.012,生成波导深度为3um[6],衬底折射率为2.138,波导宽度设计值为7um3dB耦合波导中心间距设计值为10.5um,耦合区长度LC450um,弯曲波导部分采用上升余弦型弯曲波导,弯曲部分长度L500um,弯曲过渡区高度H70um。如果根据设计输入,完全不计工艺误差,我们采用BPM软件进行仿真,可得到如图2的仿真结果。

 

         2  根据设计输入模拟的3dB定向耦合器两输出波导输出光功率示意图

从上图我们不难看出,图2中两输出光波导的输出光功率比为54%46%,但在实际的工艺过程中要完全做到7um的条宽是十分困难的,因为在光刻工艺的曝光、显影、腐蚀过程中不可避免的会出现波导条宽的展宽,根据式(6)我们可以看出波导条宽的变化将导致耦合器两输出波导输出光功率的变化,那么这种变化会有多大呢?下面我们将用BPM软件分别模拟条宽为7.1um7.2um7.3um7.4um7.5um7.6um下的耦合器两输波导输出光功率,如图3所示:

 

             (a)                                    (b)

 

 

                (c)                                     (d)

 

                 (e)                                     (f)

         3 不同波导条宽下3dB定向耦合器两输出波导输出光功率示意图

            其中:(aW=7.1um,(bW=7.2um,(cW=7.3um

                 dW=7.4um,(eW=7.5um,(fW=7.6um

          1 不同波导条宽下3dB定向耦合器的两输出波导光功率关系

条宽(um

7.1

7.2

7.3

7.4

7.5

7.6

输出光功率比

0.50.5

0.450.55

0.420.58

0.370.63

0.330.67

0.30.7

根据图3的模拟结果,以及表1统计的不同条宽下3dB定向耦合器两输出波导输出光功率比,不难看出波导条宽对3dB定向耦合器两输出波导输出光功率比是比较显著的。如果我们要将输出光功率比控制在40%60%内,我们的波导宽度误差就必须控制在0.3um以内。

四、讨论

从上面的BPM软件模拟的结果看出了波导条宽对3dB定向耦合器两输出波导输出光功率比的影响,确定了一个光刻工艺波导条宽的控制范围,但其中在特定波导条宽下的输出光功率比的确定值可能会与实际的情况有所差异,这主要有以下两个方面的原因:

1、波导折射率的差异。我们在进行以上工艺仿真的时候,是在假定波导折射率增量为0.012的情况下进行的。但在实际的工艺中,波导折射率增量与具体的质子交换源比例、退火时间等都是密切相关的,并且生成波导的折射率是渐变的,其渐变模型也与具体的生成波导的工艺密切相关,这对3dB定向耦合器的耦合系数影响是比较大的,反映到对两输出波导输出光功率比也是比较大的,图4在图2的基础上模拟了折射率增量为0.0133dB定向耦合器两输出波导输出光功率。

 

     4  模拟折射率增量为0.0133dB定向耦合器两输出波导输出光功率

从图4的模拟结果我们可以看出,虽然图4和图2在折射率增量上只相差了0.001,但其两输出波导输出光功率比却出现了明显变化,图4的输出功率比为67%33%,较图2变化了13%

2、波导深度的差异。波导深度由于没有专门的测试设备进行测量,无法得到我们工艺真实的波导深度。但波导深度对输出波导输出光功率比也是比较明显的,这也会造成我们的模拟结果与我们现在的工艺结果出现偏差,图5在图2的基础上模拟了波导深度为3.1um3dB定向耦合器两输出波导输出光功率。

 

     5  模拟波导深度为3.1um3dB定向耦合器两输出波导输出光功率

从图5可以看出,图5的输出光功率比为51%49%,它与图2的波导深度只相差0.1um,但输出光功率比却相差了3%

从上面的讨论我们不难看出,要得到与实际情况完全一致的模拟结果,必须根据实际的生成光波导的工艺进行详细的建模和精确的测量才能完成,并且保证工艺的重复性,对得到稳定的工艺结果也是至关重要的。

五、结论

本文通过采用BPM软件模拟了在不同波导条宽下的3dB定向耦合器两输出波导的输出光功率比,确定了光刻波导条宽的工艺容差范围,为光刻波导条宽的工艺控制范围提供了一定的理论依据。同时目前随着薄膜LiNbO3器件的发展,3dBm定向耦合器在集成光子,光传感中也越来越多的被应用于各种高集成度的光器件互联中6,本论文的工艺模拟成果对后期该领域的集成光子的广泛应用也具有一定的指导作用。

 

 

 

参考文献:

[1]蒋洪涛,查开德,王耀才,姚承三. 光纤AM CATV外调制发射技术. 光通信技术. 1997211):20~29.

[2]Chen K LWang S. Cross-talk problems in optical direction coupler[J]. Appl. Phys. Lett., 1984442):166168.

[3]Chinni V RHuang T CWai P K Aet al. Crosstalk in a lossy directional coupler switch[J]. Lighwave Technol. , 1995, 13(7)15301535.

[4]蔡伯荣,谭志飞,孙守瑶. 集成光学[M]. 成都:电子科技大学出版社,1990.

[5]张德龙,丁桂兰,崔宇明,陈才和. 质子交换LiNbO3光波导. 物理学进展. 200121(1):45~65.

[6] Xinqiang Pan, Wen Luo, Yao Shuai. Hardware Implementation of Edge Neural Network Computing for Sensor With Memristors Based on Single-Crystalline LiNbO3 Thin Film. IEEE SENSORS JOURNAL, VOL. 23, NO. 8, 15 APRIL 2023:8526—8534


...


阅读全文